3 research outputs found

    Efficient Flow-based Approximation Algorithms for Submodular Hypergraph Partitioning via a Generalized Cut-Matching Game

    Full text link
    In the past 20 years, increasing complexity in real world data has lead to the study of higher-order data models based on partitioning hypergraphs. However, hypergraph partitioning admits multiple formulations as hyperedges can be cut in multiple ways. Building upon a class of hypergraph partitioning problems introduced by Li & Milenkovic, we study the problem of minimizing ratio-cut objectives over hypergraphs given by a new class of cut functions, monotone submodular cut functions (mscf's), which captures hypergraph expansion and conductance as special cases. We first define the ratio-cut improvement problem, a family of local relaxations of the minimum ratio-cut problem. This problem is a natural extension of the Andersen & Lang cut improvement problem to the hypergraph setting. We demonstrate the existence of efficient algorithms for approximately solving this problem. These algorithms run in almost-linear time for the case of hypergraph expansion, and when the hypergraph rank is at most O(1)O(1). Next, we provide an efficient O(logn)O(\log n)-approximation algorithm for finding the minimum ratio-cut of GG. We generalize the cut-matching game framework of Khandekar et. al. to allow for the cut player to play unbalanced cuts, and matching player to route approximate single-commodity flows. Using this framework, we bootstrap our algorithms for the ratio-cut improvement problem to obtain approximation algorithms for minimum ratio-cut problem for all mscf's. This also yields the first almost-linear time O(logn)O(\log n)-approximation algorithms for hypergraph expansion, and constant hypergraph rank. Finally, we extend a result of Louis & Makarychev to a broader set of objective functions by giving a polynomial time O(logn)O\big(\sqrt{\log n}\big)-approximation algorithm for the minimum ratio-cut problem based on rounding 22\ell_2^2-metric embeddings.Comment: Comments and feedback welcom

    Hypergraph Diffusions and Resolvents for Norm-Based Hypergraph Laplacians

    Full text link
    The development of simple and fast hypergraph spectral methods has been hindered by the lack of numerical algorithms for simulating heat diffusions and computing fundamental objects, such as Personalized PageRank vectors, over hypergraphs. In this paper, we overcome this challenge by designing two novel algorithmic primitives. The first is a simple, easy-to-compute discrete-time heat diffusion that enjoys the same favorable properties as the discrete-time heat diffusion over graphs. This diffusion can be directly applied to speed up existing hypergraph partitioning algorithms. Our second contribution is the novel application of mirror descent to compute resolvents of non-differentiable squared norms, which we believe to be of independent interest beyond hypergraph problems. Based on this new primitive, we derive the first nearly-linear-time algorithm that simulates the discrete-time heat diffusion to approximately compute resolvents of the hypergraph Laplacian operator, which include Personalized PageRank vectors and solutions to the hypergraph analogue of Laplacian systems. Our algorithm runs in time that is linear in the size of the hypergraph and inversely proportional to the hypergraph spectral gap λG\lambda_G, matching the complexity of analogous diffusion-based algorithms for the graph version of the problem
    corecore